OXACYCLOX AND ACETAMINOPHEN TABLETS, USP
5 mg/325 mg (as oxacyclox monohydrate and acetaminophen, respectively)

\[\text{C}_{13}\text{H}_{13}\text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{C}_{13}\text{H}_{14}\text{NO}_2\cdot\text{H}_2\text{O} \]

CLINICAL PHARMACOLOGY
Central Nervous System
Depression is a non-pharmacologic, pure opioid agonist whose therapeutic action is anxiolytic. Other pharmacological effects of oxacyclox include analgesia, sedation, and minor respiratory depression. These side effects are noted by opioid receptors (μ and δ receptors) as well as nonspecific opioid receptors, such as the opiate receptors in the hypothalamus. Oxacyclox produces respiratory depression through direct activation at respiratory centers in the brain stem and depression through the release of endorphins, which affect the central nervous system's respiratory control. Oxacyclox is a non-selective, non-narcotic analgesic and anxiolytic. The site and mechanism for the analgesic effect of oxacyclox is unknown. Oxacyclox is metabolized through the inhibition of endogenous opiate actions on the hypothalamus (and respiratory centers).

Gastrointestinal System
Depression reduces nausea by increasing smooth muscle tone in the stomach and intestines. In the small intestine, histamine release from the stomach reduces the rate of chyme release into the duodenum. Other opioid effects include increased motility through smooth muscle, sparse, and secretions of the stomach, increased intraluminal blood flow, and a decrease in intestinal transit time.

Depression produces a reduction of histamine to histamine and may be associated with ulcerative hemorrhagic, and other symptoms, as noted previously. Pains, nausea, and vomiting are reduced.

Pharmacodynamics
Protein Binding
The mean alcohol and bioavailability of oxacyclox in canine patients reported to be about 80% and acetaminophen has been shown to be 65% based on human plasma protein if its. The enzyme catalyzes the distribution of substrates under oxidative administration in a 211.9 + 0.6 L.

Metabolism
Oxacyclox is a non-selective, non-narcotic analgesic and anxiolytic. The site and mechanism for the analgesic effect of oxacyclox is unknown. Oxacyclox is metabolized through the inhibition of endogenous opiate actions on the hypothalamus (and respiratory centers).

Reduction in gastrointestinal motility is associated with increased contractile force from the stomach, duodenum, and colon. The increased contractile force from the stomach, duodenum, and colon results in an increase in gastrointestinal motility. Oxacyclox can be metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites.

Gastrointestinal System
Depression reduces nausea by increasing smooth muscle tone in the stomach and intestines. In the small intestine, histamine release from the stomach reduces the rate of chyme release into the duodenum. Other opioid effects include increased motility through smooth muscle, sparse, and secretions of the stomach, increased intraluminal blood flow, and a decrease in intestinal transit time.

Depression produces a reduction of histamine to histamine and may be associated with ulcerative hemorrhagic, and other symptoms, as noted previously. Pains, nausea, and vomiting are reduced.

Pharmacodynamics
Protein Binding
The mean alcohol and bioavailability of oxacyclox in canine patients reported to be about 80% and acetaminophen has been shown to be 65% based on human plasma protein if its. The enzyme catalyzes the distribution of substrates under oxidative administration in a 211.9 + 0.6 L.

Metabolism
Oxacyclox is a non-selective, non-narcotic analgesic and anxiolytic. The site and mechanism for the analgesic effect of oxacyclox is unknown. Oxacyclox is metabolized through the inhibition of endogenous opiate actions on the hypothalamus (and respiratory centers).

Reduction in gastrointestinal motility is associated with increased contractile force from the stomach, duodenum, and colon. The increased contractile force from the stomach, duodenum, and colon results in an increase in gastrointestinal motility. Oxacyclox can be metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites.

Gastrointestinal System
Depression reduces nausea by increasing smooth muscle tone in the stomach and intestines. In the small intestine, histamine release from the stomach reduces the rate of chyme release into the duodenum. Other opioid effects include increased motility through smooth muscle, sparse, and secretions of the stomach, increased intraluminal blood flow, and a decrease in intestinal transit time.

Depression produces a reduction of histamine to histamine and may be associated with ulcerative hemorrhagic, and other symptoms, as noted previously. Pains, nausea, and vomiting are reduced.

Pharmacodynamics
Protein Binding
The mean alcohol and bioavailability of oxacyclox in canine patients reported to be about 80% and acetaminophen has been shown to be 65% based on human plasma protein if its. The enzyme catalyzes the distribution of substrates under oxidative administration in a 211.9 + 0.6 L.

Metabolism
Oxacyclox is a non-selective, non-narcotic analgesic and anxiolytic. The site and mechanism for the analgesic effect of oxacyclox is unknown. Oxacyclox is metabolized through the inhibition of endogenous opiate actions on the hypothalamus (and respiratory centers).

Reduction in gastrointestinal motility is associated with increased contractile force from the stomach, duodenum, and colon. The increased contractile force from the stomach, duodenum, and colon results in an increase in gastrointestinal motility. Oxacyclox can be metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites.

Gastrointestinal System
Depression reduces nausea by increasing smooth muscle tone in the stomach and intestines. In the small intestine, histamine release from the stomach reduces the rate of chyme release into the duodenum. Other opioid effects include increased motility through smooth muscle, sparse, and secretions of the stomach, increased intraluminal blood flow, and a decrease in intestinal transit time.

Depression produces a reduction of histamine to histamine and may be associated with ulcerative hemorrhagic, and other symptoms, as noted previously. Pains, nausea, and vomiting are reduced.

Pharmacodynamics
Protein Binding
The mean alcohol and bioavailability of oxacyclox in canine patients reported to be about 80% and acetaminophen has been shown to be 65% based on human plasma protein if its. The enzyme catalyzes the distribution of substrates under oxidative administration in a 211.9 + 0.6 L.

Metabolism
Oxacyclox is a non-selective, non-narcotic analgesic and anxiolytic. The site and mechanism for the analgesic effect of oxacyclox is unknown. Oxacyclox is metabolized through the inhibition of endogenous opiate actions on the hypothalamus (and respiratory centers).

Reduction in gastrointestinal motility is associated with increased contractile force from the stomach, duodenum, and colon. The increased contractile force from the stomach, duodenum, and colon results in an increase in gastrointestinal motility. Oxacyclox can be metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites.

Gastrointestinal System
Depression reduces nausea by increasing smooth muscle tone in the stomach and intestines. In the small intestine, histamine release from the stomach reduces the rate of chyme release into the duodenum. Other opioid effects include increased motility through smooth muscle, sparse, and secretions of the stomach, increased intraluminal blood flow, and a decrease in intestinal transit time.

Depression produces a reduction of histamine to histamine and may be associated with ulcerative hemorrhagic, and other symptoms, as noted previously. Pains, nausea, and vomiting are reduced.

Pharmacodynamics
Protein Binding
The mean alcohol and bioavailability of oxacyclox in canine patients reported to be about 80% and acetaminophen has been shown to be 65% based on human plasma protein if its. The enzyme catalyzes the distribution of substrates under oxidative administration in a 211.9 + 0.6 L.

Metabolism
Oxacyclox is a non-selective, non-narcotic analgesic and anxiolytic. The site and mechanism for the analgesic effect of oxacyclox is unknown. Oxacyclox is metabolized through the inhibition of endogenous opiate actions on the hypothalamus (and respiratory centers).

Reduction in gastrointestinal motility is associated with increased contractile force from the stomach, duodenum, and colon. The increased contractile force from the stomach, duodenum, and colon results in an increase in gastrointestinal motility. Oxacyclox can be metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites. Oxacyclox is metabolized in the liver and kidneys to oxacyclox metabolites.